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view, material points in each of these configurations 
(in the same order) will be specified by position vec­
tors R, nand r, with coordinates (Xa ), (~k) and (xk) 
respectively. 

The deformations which take Ko-+K and K-+ 
K (t) are specified by the one to one mappings 

and 

~k = ~dXa), Xa = Xa(~k) CJ., k = 1, 2, 3, 

j = detlo~,JoXal # 0 (3) 

Xk = Xk(~l> t), ~k = ~k(Xl' t) k, I = 1,2,3 
t>O 

(4) 

The deformations specified by eqns. (3) and (4) are 
equivalent to passage from the natural to the current 
configurations such that 

Xk = xk(Xa, t), Xa = Xa(Xk' t) 

J = det 10xk/oXal # 0 . (5) 

Mass densities Po, P and P associated with configura­
tions K o, K and K(t) are related to the above Jaco­
bians by 

j = Po /p, J' = Pip, J = Po/p . (6) 

If u (n, t) represents the displacement vector of a 
material point currently 6ccupying position r(t), 
which at time t = 0 had the initial position n, then 

(7) 

While Ko-+K may be arbitrary, the superimposed 
time dependent deformationsK -+ K(t) are restricted 
to infinitesimal magnitudes, i.e., OUk/O~1 ~ 1 for all 
t>O. 

Relative to the initial configuration K, appro­
priate constitutive relations for a general theory of 
elasticity are given by 13 

(8) 

(9) 

which are the Cauchy and Kirchhoff-Piola stress 
tensors respectively, where 

- - O~k 
CafJ = ~k.a~l.fJbkl = CfJa, ~k.a = ax (10) 

a 

are the components of the Green-Cauchy deforma­
tion tensor. Constitutive relations of this kind 

presume the existence of a strain energy density 1: 
which is a continuous and continuously differenti­
able function of the CafJ. A mixed Kirchhoff-Piola 
stress tensor is also defined by the relations 

- - oX(/. _ 01: 
4k = J ¥ tkl = 4fJ~k,fJ = ~ (11) 

'-,1 '-,k .a 

which in (he absence of body force are solutions of 
the equilibrium equations 

(12) 

in the initial configuration K. In the current config­
uration K (t) these same stress components satisfy 
the equations of motion 

(13) 

Expanding 4k in the displacement gradients about 
K 

Since the displacement gradients 
u1.fJ = (au1/ a~m)· ~m,fJ' with OUl/0~m ~ 1, 

4k = tk + Aka1fJ u1.fJ 

where in view of relations (10) and (11) 

_ atk 021: 
Ak IfJ = -- = ---

a a~l.fJ O~k.aa~l.fJ 

(14) 

02 1: 01: 
= 4 at at ~k,Y~I.6 + 2 at bk1 · (15) 

ay fJ6 afJ 

Linearized equations of motion about the initial 
configuration in the form 

_ a2 Uk 
[AkalP U1.p]a = Po ot2 (16) 

follow from eqns. (13) and (14), with due account 
taken of eqn. (12). Relative to the coordinates (~k) of 
the initial state these equations transform to 

(17) 

after use of the identity (o/a~p) [j - 1 ~p,a] = O. 
For initial deformations Ko-+K which are ho­

mogeneous, corresponding deformation gradients 
~k.a as well as the strain energy derivatives in eqns. 
(15) have constant values throughout K. Equation 
(17) accordingly reduces to 
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] - 1 - a2
UI _ a2

Uk 

Akal/J~p,a~q,/J a~pa~q = P at2 . (18) 

If the displacements superimposed on the homo­
geneously deformed initial state are small ampli­
tude plane waves 

u = Re[Aei(liv ,,,, - wl)J (19) 

where k is the wave number, v the propagation di­
rection and w the frequency, then eqn. (19) will be 
solutions of the equations of motion (18) if 

Akal/J~p,a~q ,/JvpvqAI = (PO ~:) Ak = POU 2 Ak (20) 

which is a wave propagation condition, with 
w2/P= U 2 the wave speeds. The second-order 
quantities 

Qkl (v) = Akal/J ~p ,a ~q,(J vp Vq 

(21) 

define components of the acoustical tensor, which 
reduces the wave propagation condition to the 
familiar characteristic or eigenvalue equation 

[Qkl(V) - (Po U 2)bk1J Al = 0 (22) 

with Po Ul), i = 1, 2, 3, the eigenvalues and A(i)1 the 
corresponding eigenvectors (displacement ampli­
tudes) which define the acoustical axes for a given 
propagation direction v. 

The character of the wave propagation depends 
on the nature of the matrix Q=(Qkl(V)), The 
eigenvalues and eigenvectors will be real valued if 
the components Qkl(V) are real and symmetric. 
When the eigenvalues are real and distinct the asso­
ciated eigenvectors defme three real mutually ortho­
gonal acoustic axes. If Q is furthermore a positive­
definite matrix, i.e. , satisfies for every propagation 
direction v the so-called strongly elliptic condition 

Qkl(V)hkhl > 0 (23) 

for arbitrary non-zero vector h, then the squared 
wave speeds will be positive, thereby admitting only 
real propagation speeds1l , 14. 

Solids which respond elastically are characterized 
as hyperelastic if they possess a strain energy func­
tion which is continuous and continuously differ­
entiable in some measure of the deformation. The 

development given above makes this presumption, 
from which follows, as examination of eqns. (15) 
and (21) will show, symmetry of the acoustical ten­
sor. Thus for hyperelastic solids the square of the 
wave speeds and the corresponding acoustical axes 
are real, and for each direction of propagation there 
exists at least one mutually orthogonal set of acoustic 
axes. The wave speeds will not necessarily be real 
however, unless condition (23) is additionally 
satisfied. 

The strain energy function for the alkali metals at 
zero temperature, given explicitly by eqn. (1), is of 
course not presumed but derived. Being continuous 
and continuously differentiable in the deformation 
tensor Ca(J' it thereby characterizes these metals as 
hyperelastic and furthermore assures symmetry of 
the acoustic tensor and real values for the squared 
wave speeds. The necessary and sufficient conditions 
which guarantee positive squared wave speeds Ul), 
and thus real wave speeds Uti) , for arbitrary initial 
homogeneous deformation can be obtained from 
condition (23), where eqn. (1) is used in conjunction 
with eqn. (21). This calculation however involves 
several dozens of terms and is much too complicated 
to permit any interpretation. In the next section 
theoretical wave speeds for several propagation 
directions superimposed on different states of initial 
compression are calculated. The values obtained are 
all real and positive indicating positive-defmite 
character of the acoustic matrix Q. 

As K-+Ko, (~k)-+(X,J and ~k ,a -+bKa' Using the 
strain energy density eqn. (1) with zero temperature 
lattice spacing values as given in Table 1, 

oJ: _ 
2 ~ = Yap -+ Yap = 0 

uCa(J 

in the natural state. The quantities (15) correspond­
ingly reduce to 

Akal/J-+AKa'<(J = [4 OC

0 2:c ] = CKaA.(J 
Ka A. /J C = i 

which are the second-order elastic coefficients. C is 
the matrix (Ca/J) and I the identity matrix. Theoreti­
cal calculation of the CKa A. /J using eqn. (1) compare 
quite well with experimental values, particularly 
for potassium, rubidium, and cesium 1,2. The equa­
tions of motion (16) likewise become the equations 
of motion of classical linear elasticity for small 
deformation about the natural configuration Ko 

a2 u 
AKaA./JuA.,/Ja = Po at2K. 
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